22 May 2016

This Is How the U.S. Navy Plans to Deal with Enemy Missiles (Think China)

May 19, 2016

The Navy is building and testing a fleet of upgraded DDG 51 Arleigh Burke-class destroyers with a series of next-generation technologies -- including an ability to detect and destroy incoming enemy anti-ship cruise missiles at farther ranges from beyond the horizon.

The new fire-control system, called Naval Integrated Fire Control – Counter Air, or NIFC-CA, was recently deployed on a Navy cruiser serving as part of the Theodore Roosevelt Carrier Strike Group in the Arabian Gulf, Navy officials told Scout Warrior.

The technology enables ship-based radar to connect with an airborne sensor platform to detect approaching enemy anti-ship cruise missiles from beyond the horizon and, if needed, launch an SM-6 missile to intercept and destroy the incoming threat, Navy officials said.

“NIFC-CA presents the ability to extend the range of your missile and extend the reach of your sensors by netting different sensors of different platforms -- both sea-based and air-based together into one fire control system,” Capt. Mark Vandroff, DDG 51 program manager, told Scout Warrior in an interview.

NIFC-CA is part of an overall integrated air and missile defense high-tech upgrade now being installed and tested on existing and new DDG 51 ships called Aegis Baseline 9, Vandroff said.

The system hinges upon an upgraded ship-based radar and computer system referred to as Aegis Radar –- designed to provide defense against long-range incoming ballistic missiles from space as well as nearer-in threats such as anti-ship cruise missiles, he explained.

(This first appeared in Scout Warrior here.)

"Integrated air and missile defense provides the ability to defend against ballistic missiles in space while at the same time defending against air threats to naval and joint forces close to the sea,” he said. 

The NIFC-CA system successfully intercepted a missile target from beyond the horizon during testing last year aboard a Navy destroyer, the USS John Paul Jones. The NIFC-CA technology can, in concept, be used for both defensive and offensive operations, Navy officials have said. Having this capability could impact discussion about a Pentagon term referred to as Anti-Acces/Area-Denial, wherein potential adversaries could use long-range weapons to threaten the U.S. military and prevent its ships from operating in certain areas -- such as closer to the coastline. Having NIFC-CA could enable surface ships, for example, to operate more successfully closer to the shore of potential enemy coastines without being deterred by the threat of long-range missiles.

Defensive applications of NIFC-CA would involve detecting and knocking down an approaching enemy anti-ship missile, whereas offensive uses might include efforts to detect and strike high-value targets from farther distances than previous technologies could. The possibility for offensive use parallels with the Navy’s emerging “distributed lethality” strategy, wherein surface ships are increasingly being outfitted with new or upgraded weapons. 

The new strategy hinges upon the realization that the U.S. Navy no longer enjoys the unchallenged maritime dominance it had during the post-Cold War years.

During the years following the collapse of the former Soviet Union, the U.S. Navy shifted its focus from possibly waging blue-water combat against a near-peer rival to focusing on things such as counter-terrorism, anti-piracy and Visit, Board Search and Seizure, or VBSS, techniques.

More recently, the Navy is again shifting its focus toward near-peer adversaries and seeking to arm its fleet of destroyers, cruisers and Littoral Combat Ships with upgraded or new weapons designed to increase its offensive fire power.

The current upgrades to the Arleigh Burke-class of destroyers can be seen as a part of this broader strategic equation.

The first new DDG 51 to receive Baseline 9 technology, the USS John Finn or DDG 113, recently went through what’s called “light off” combat testing in preparation for operational use and deployment.

At the same time, the very first Arleigh Burke-class destroyer, the USS Arleigh Burke or DDG 51, is now being retrofitted with these technological upgrades, as well, Vandroff explained.

“This same capability is being back-fitted onto earlier ships that were built with the core Aegis capability. This involves an extensive upgrade to combat systems with new equipment being delivered. New consoles, new computers, new cabling, new data distribution are being back-fitted onto DDG 51 at the same time it is being installed and outfitted on DDG 113,” Vandroff said. 

There are seven Flight IIA DDG 51 Arleigh Burke-class destroyers currently under construction. DDG 113, DDG 114, DDG 117 and DDG 119 are underway at a Huntington Ingalls Industries shipbuilding facility in Pascagoula, Mississippi and DDG 115, DDG 116 and DDG 118 are being built at a Bath Iron Works shipyard in Bath, Maine.

Existing destroyers the new USS John Finn and all follow-on destroyers will receive the Aegis Baseline 9 upgrade, which includes NIFC-CA and other enabling technologies. For example, Baseline 9 contains an upgraded computer system with common software components and processors, service officials said.

In addition, some future Arleigh Burke-class destroyers such as DDG 116 and follow-on ships will receive new electronic warfare technologies and a data multiplexing system which, among other things, controls a ship’s engines and air compressors, Vandroff said. 

The Navy’s current plan is to build 11 Flight IIA destroyers and then shift toward building new, Flight III Arleigh Burke-class destroyers with a new, massively more powerful radar system, he added. 

Vandroff said the new radar, called the SPY-6, is 35-times more powerful than existing ship-based radar.

Flight III Arleigh Burke destroyers are slated to be operational by 2023, Vandroff said.

Kris Osborn became the Managing Editor of Scout Warrior in August of 2015. His role with Scout.com includes managing content on the Scout Warrior site and generating independently sourced original material. Scout Warrior is aimed at providing engaging, substantial military-specific content covering a range of key areas such as weapons, emerging or next-generation technologies and issues of relevance to the military. Just prior to coming to Scout Warrior, Osborn served as an Associate Editor at the Military.com. This story originally appeared in Scout Warrior.

No comments: